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AN ULTRASOUND METHOD FOR EXPERIMENTAL EVALUATION OF FIELD 

NONUNIFORMITIES IN INTERNAL DYNAMIC STRESSES 

V. P. Lebedev and V. M. Nodyushkin UDC 534.1 

The dynamically stressed state of machine elements and structures is determined through 
the measurement of the vibrations at the surfaces of these elements. Data relating to 
the structure of the elastic field within these elements are obtained through sequential 
calculations [i] based on mathematical relationships known to us from the theory of elastic- 
ity. These methods are based on measurements and calculations which have proved themselves 
in evaluating the structure of a static and quasistatic elastic field, but they become 
virtually useless when consideration must be given to the wavelike nature of the field. 
However, an increasing number of problems is encountered in engineering, where it is pre- 
cisely these wave processes in machines and constructions that must be subjected to study 
[2]. There arises a need to find new principles for the experimental evaluation of field 
structure. 

i. Let us turn to the studies [3, 4] where it is proposed to use the phenomenon of 
nonlinear interaction between elastic waves. The essence of this proposal lies in the 
fact that a plane monochromatic ultrasonic wave, on reaching a zone of a rather powerful 
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field, is modulated with respect to phase at such a time. The effect of modulation is 
accumulated over the extent of the entire wave path through the zone and depends on the 
direction of wave propagation. Thus, we obtain information regarding the structure of 
a low-frequency elastic wave field within an element of the construction. The general 
form of the mathematical connection between the instantaneous increment in the phase of 
the acoustic signal with the dynamic deformations to which this field is subjected in the 
case of an isotropic solid body has been derived in [3] under the condition that the time 
scale for the change in the dynamic deformations is considerably larger than the period 
of the ultrasonic wave, while the displacement amplitude of this field is represented by 
the displacements generated by the ultrasonic wave: 

r 

z 0 
/ t t y 

(t) = B ( ~  + ~ + V~) I~,0+~'/c d~, 
0 

(1) 

where B = ~/(2pc2); ~ is the frequency of the ultrasound wave; 0 is the density; c is the 
speed of ultrasound propagation; ~ = 6p + 3% + 4m + 2~, ~ = A + 2~ are the parameters of 
material nonlinearity; p, A, ~, m, and n are the 2nd and 3rd order elasticity constants, 
respectively, Eli' represents the diagonal components of the strain tensor for the elastic 
dynamic field. 

In the following we examine a method for the evaluation of field nonuniformities in 
the internal dynamic stresses within machine and structural elements, said method based 
on utilization of relationship (i), suitable for practical applications. 

We note that formula (!) has been derived in such a rather simple form because of 
our choice for the coordinate system: the z' axis is directed along the path of wave-front 
propagation for the ultrasound probing wave. Since the object of our study is the field 
within the structural element, it will be expedient in the following to examine condition 
(i), expressed in a system of coordinates connected to that element. It is sufficient 
to write the components ~ij' in this new system of coordinates and correctly to carry out 
the substitution of the integration variable. Then 

3 3 z0  

i=i j=1 o 
(2) 

[Aij = Aij(@) is the turning matrix of the coordinate system (see Fig. i)]. 

Relationship (2) serves as the initial equation for the development of methods to 
evaluate the structure of the dynamic elastic field. Here the advance of the phasd ~(@, t) 
serves as the integral characteristic of the field of strains sij. The problems dealing 
with evaluation of the structure of the differential characteristic~on the basis of known 
integral characteristics of the process (of the field) as a rule, are not well founded. 
The solution will be sought in a narrow class of functions so as to ensure, on the one 
hand, reliable differences in the unknown structural features of the field and, on the 
other hand, a probable physical interpretation of these features. 

In our case, in connection with the wave elements of machinery, constructions of such 
a class of functions (the mathematical model of the field) are given in the form 

ell(x, z, t) = e0(z)exp [ i (~t  - -  kx )] ,  

e22 = ca3 ~ --v811, e i j =  0 when i=/=] (3)  

(v i s  t h e  P o i s s o n  c o e f f i c i e n t ,  and ~ and k a r e  t h e  f r e q u e n c y  and wave number o f  t h e  wave,  
b e i n g  c o n s i d e r e d  h e r e ,  as  i t  p r o p a g a t e s  t h r o u g h  t h e  e l e m e n t ) .  Th i s  model  o f  t h e  f i e l d ,  
o r  t h e  q u a s i - r o d  a p p r o x i m a t i o n ,  r e p r e s e n t  a t r a v e l i n g  wave t h a t  i s  u n i f o r m  a l o n g  y and 
n o n u n i f o r m i y  d i s t r i b u t e d  a l o n g  z ( t h e  t r a n s v e r s e  c o o r d i n a t e  o f  a rod  o f  f i n i t e  t h i c k n e s s ) .  
We w i l l  t a k e  t h e  c o r r e l a t i o n  i n t e r v a l  ~ o f  t h e  f u n c t i o n  s 0 ( z )  as  t h e  p a r a m e t e r  o f  n o n u n i -  
f o r m i t y ,  c h a r a c t e r i z i n g  t h e  u n i q u e  f e a t u r e s  o f  t h e  f i e l d  s t r u c t u r e .  Through s u b s t i t u t i o n  
of (3) into (2) we obtain 
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e?(o, t) = B(O)exp [i~to] f eo(z)exp[iz ( cos 0 --ktgO)]dz, 
0 

B (0) ---- un (o) -- ~U2~, r -- ~%3 (o) B. 

We are interested in the energy characteristic ~(0, t), since it reflec s the energy rela- 
tionships of the field, and its energy structure. Moreover, when the field being studied 
is monochromatic, it is the square of the modulation index, i.e., a quantity used in engineer- 
ing and both familiar and accessible to measurement: 

z o z o 

mg = qD (0 ,  t) qD (0,  t) = B ~ (0) y ~ % (z) eo (z~) exp [iU (z -- z,)l dz d%, 
0 0 

z o 

rn,~ -~ B z (O1 ]" K (h) exp  [iUA] d h  = B ~" ((9) G (U). 
0 

(4) 

H e r e  A = z - - z l ;  U =  f l  k t g O ;  c cos 0 

z 0 

6; (u) = ]" K (A) exp [iUA] dA; 
0 

(5) 

z0- -A  

K (A) = ~ ~o (z + A) ~o (Zo) dz. 
- - h  

(6)  

When we take into consideration that e0(z) = 0 when z < 0 and z > z 0, in (5) and (6) we 
can set the integration limits from -~ to +~, i.e., K(A) and G(U) are the correlation function 
and power spectrum of the function g0(z) (U is the spatial frequency). Since g0(z) describes 
the nonuniformity of the field at a section in the element, K(&) and G(U) are equally likely 
and adequate characteristics of this nonuniformity. It follows from relationships (4) 
and (5) that based on the angular relationship me 2, accessible to measurement, we can find 
G(U) and K(A), and consequently we can also find ~. We determine the correlation interval 
in various ways, primarily through consideration of the specific nature of the signals 
being processed, as well as from considerations of computational convenience. In analytical 
studies one of the following relationships is taken as ~: 

-c = A=K 2 (A) d K 2 (k) dA , T = ] K (5) l dh/K (0). 
- - o o  

2. The experimental estimate eQ(z) of the nonuniformity reduces to the measurement 
of the modulation index m~ 2 for various angles of ultrasound-wave propagation through the 
subject waveguide element of the machine, to the finding of K(A) from (4) and (5), which 
involves utilization of the Fourier transformations and the calculation of the nonuniformity 
parameter ~. 

The measurements of the modulation index were carried out in accordance with the diagram 
shown in Fig. i, where 1 represents the generator of monochromatic ultrasonic oscillations 
providing for frequency stability no lower than 10-7; 2 identifies the converter prisms, 
3 represents the piezoceramic plate with a resonant frequency of 2 MHz; 4 is the model 
of the waveguide element of the machine; 5 is a band filter; 6 is a selective voltmeter; 
7 is the piezoceramic emitter producing the elastic dynamic field; and 8 identifies the 
low-frequency generator. The probe angle @ was altered by means of a set of pairs of prisms. 
The modulation index was defined as the ratio between the amplitude of the side component 
in the spectrum of the incoming modulated signal to the amplitude of the carrier, measured 
by means of the selective voltmeter. The error in the measurement of the modulation index 
in this case amounted to 12% in the experiment. We used an arm made of plastic with dimen- 
sions of 70 • 150 • 1500 ram as the model of the waveguide element in which a variable 

658 



elastic field was excited at one end. Owing to the choice of a sufficiently high frequency 
of oscillations (from i0 to 50 kHz) a traveling wave appeared within this arm, and this 
wave was virtually attenuated at a length of 1.5 m and, in our opinion, corresponded fully 
to the field model in (3). In the process of working with the experimental data we employed 
a computational method to offset the constant component r The nonuniformity of the 
field was evaluated relative to the uniform distributions of dynamic strains through a 
section of the element, i.e., the ratio c/T 0 served as the characteristic, and this charac- 
teristic for a uniform distribution [~0(z) = const, T = To] is equal to unity. Some cumber- 
some calculations were the price we had to pay for clarity of results. 

The quantity ~/T 0 was determined experimentally as a function of the distance to the 
emitter, as a function of the frequency of the dynamic strains, as a function of the presence 
of coupling within the arm, the latter being modeled by glueing a piece of plastic to this 
arm. Observations yielded the following results. The correlation interval is at a minimum 
near the emitter: ~/~0 = 0.76 (at a frequency of 20 kHz), which indicates maximum nonuni- 
formity in this region. From the relationship between the values of c/T 0 and ~, shown 
in Fig. 2 (the distance between the point of measurement and the emitter, generating the 
dynamic elastic field), we can see that in the process of transition to regions within 
the models of the elements more distant from the emitter the structure of the field becomes 
smoother, nearly uniform in distribution. At a distance ~ = 5(2~)/K the correlation interval 
increases by 20-25%. 

Measurements at various frequencies (15, 20, 30, 40, and 55 kHz) showed a reduction 
in the correlation interval from 0.95 to 0.22. This gives evidence to the effect that 
with an increase in frequency there is an increase in the nonuniformity of the field (see 
Fig. 3). At frequencies of 15 kHz and lower, within the limits of error for the method, 
the structure of the field at various points in no way differs from uniform distribution. 
We also noted an increase in the nonuniformity of the field near the coupling: in the 
experiments this reduction in the correlation interval amounted to 50% in comparison with 
the given period. 

The above-enumerated results are in qualitative agreement with presently existing 
concepts regarding the propagation of oscillations in elastic waveguides [5, 6]. Moreover, 
with multiple repetitions of the experiment the results are repeated. Scattering in the 
values of ~/T 0 for various series of measurements, given identical conditions, does not 
exceed 15%. This provides a basis for speaking of a quantitative estimate of the magnitude 
of the nonuniformity on the basis of the parameter T. We should note that in addition 
to the nonuniformity of the field in a section of the element on the basis of the cited data, 
the weak nonuniformity of the field along the element is also evaluated. 
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The proposed method can be used for nondestructive determination of the internal dynamic 
stressed state of machine components, constructions, and their elements. 

In conclusion, let us note that model (3) represents a rough reflection of field nonuni- 
formity, and fails to fully describe the real dynamic stresses within the waveguide. How- 
ever, it does provide a solution for the poorly founded problem, one that is suitable for 
practical application. Moreover, this method of evaluating the nonuniformities of the 
field allows for measurement tools currently in production and, consequently, immediately 
available in actual practice. 
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LONG WAVES OF FINITE AMPLITUDE IN POLYDISPERSED 

GAS SUSPENSIONS 

N. A. Gumerov UDC 532.529 

Most theoretical studies dealing with the wave dynamics of gas suspensions are devoted 
to the propagation of weak waves and waves of finite amplitude in monodisperse mixtures 
[1-7]. In [i, 8] we find a model for a polydisperse suspension consisting of a gas and 
a finite number of particle fractions. The generalization of this model to the continuous 
functions of particle distribution by size insofar as this relates to description of the 
propagation of sound waves and vapor and gas suspensions, as well as certain of the results 
from the calculation of dispersion and attenuation of monochromatic perturbations, is pre- 
sented in [9]. 

It has been demonstrated in the present study that the propagation of long-wave per- 
turbations of finite amplitude in rarefied polydisperse gas suspensions with an arbitrary 
mass content of particles within the mixture and an arbitrary function of particle distri- 
bution by size can be described within the framework of the model of a monodisperse medium 
with a particular effective particle radius. In particular, this allows us to generalize 
the results of the earlier analytical and numerical studies into the propagation of long 
waves in monodisperse suspensions without phase transitions to polydisperse gase suspensions. 

i. Original Equations. Let us examine a rarefied gas suspension with a limited volu- 
metric particle content of ~2 ~ i within the mixture. The relative mass particle content 
m = ~2p2~ ~ in this case need not be small, since the true density of the material for 
the particle is considerably greater than the true gas density p2 ~ m p 0. We will assume 
the particles to be incompressible, and that the gas is ideal, calorically perfect (the 
viscosity and thermal conductivity of the gas is taken into consideration only in inter- 
phase interaction). 
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